ISSN 1070-4280, Russian Journal of Organic Chemistry, 2009, Vol. 45, No. 10, pp. 1496–1502. © Pleiades Publishing, Ltd., 2009. Original Russian Text © E.A. Dikusar, V.I. Potkin, N.G. Kozlov, M.M. Ogorodnikova, 2009, published in Zhurnal Organicheskoi Khimii, 2009, Vol. 45, No. 10, pp. 1512–1518.

N-[(*E*)-3-Alkoxy-4-hydroxy(alkoxy, alkanoyloxy, aroyloxy)benzylidene]-4-phenoxyanilines

E. A. Dikusar, V. I. Potkin, N. G. Kozlov, and M. M. Ogorodnikova

Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus, ul. Surganova 13, Minsk, 220072 Belaruse-mail: evgen 58@mail.ru

Received October 16, 2008

Abstract—Condensation of 4-phenoxyaniline with benzaldehydes of the vanillin series in methanol gave the corresponding Schiff bases, N-[(E)-3-alkoxy-4-hydroxy(alkoxy, alkanoyloxy, aroyloxy)benzylidene]-4-phenoxyanilines.

DOI: 10.1134/S1070428009100121

We previously reported on the synthesis of Schiff bases of the vanillin series and their film-forming properties and sensitivity to heat and light [1–3]. The synthesized compounds turned out to be promising as materials for the preparation of nanofilms and nanomaterials based thereon [4–6].

The goal of the present work was to develop a preparative procedure for the synthesis of new aromatic Schiff bases containing hydroxy, ether, and ester groups, as well as carborane fragments. By condensation of vanillin (4-hydroxy-3-methoxybenzaldehyde), vanillal (3-ethoxy-4-hydroxybenzaldehyde), and ethers and esters derived therefrom with 4-phenoxyaniline (II) in boiling anhydrous methanol we obtained the corresponding aromatic Schiff bases IIIa–IIIu and IVa–IVI in 84–90% yield. The reactions were complete in 10–15 min under mild conditions in the absence of a catalyst, which favored conservation of labile ester groups. According to the ¹H NMR data, the purity of the isolated compounds was $96\pm1\%$.

Compounds **IIIa–IIIu** and **IVa–IVI** are colorless or slightly colored crystalline or glassy substances. They

III, R = H, R' = Me (a); R = MeO, R' = H (b), Me (c), MeC(O) (d), EtC(O) (e), PrC(O) (f), $Me_2CHC(O)$ (g), $Me(CH_2)_6C(O)$ (h), $Me(CH_2)_8C(O)$ (i), $Me(CH_2)_16C(O)$ (j), $H_2C=C(Me)C(O)$ (k), $PhCH_2C(O)$ (l), $PhCH(Me)CH_2C(O)$ (m), PhC(O) (n), 2,4- $Cl_2C_6H_3C(O)$ (o), 4- $BrC_6H_4C(O)$ (p), 3- $O_2NC_6H_4C(O)$ (q), MeOC(O) (r), EtOC(O) (s), 1,2- $C_2B_{10}H_{11}$ -1-C(O) (t); R = MeO (u); IV, R = EtO, R' = H (a), Me (b), MeC(O) (c), EtC(O) (d), PrC(O) (e), $Me_2CHC(O)$ (f), $Me_2CHCH_2C(O)$ (g), 4- $MeC_6H_4C(O)$ (h), MeOC(O) (i), EtOC(O) (j), 1,2- $C_2B_{10}H_{11}$ -1-C(O) (g), 4- $MeC_6H_4C(O)$ (h), MeOC(O) (i), EtOC(O) (j), 1,2- $C_2B_{10}H_{11}$ -1-C(O) (k); R = EtO (l).

contained no impurities of the initial reactants, and no additional purification was necessary. The structure of **IIIa–IIIu** and **IVa–IVI** was proved by their elemental analyses, IR and ¹H NMR spectra, and determination of the molecular weight by cryoscopy. Protons in the HC=N group of **IIIa–IIIu** and **IVa–IVI** gave a singlet at δ 8.41–8.51 ppm in the ¹H NMR spectra, which is typical of Schiff bases with *E* configuration of the double C=N bond [7].

The *E* configuration of these compounds was also confirmed by quantum-chemical calculations of heats of formation (H_f) of E and Z isomers of Schiff bases IIIa, IIIc, IIId, IVa, IVc, and IVd. The calculations were performed in terms of MNDO PM3 semiempirical approximation [8, 9] using GAMESS software [10] with complete optimization of geometric parameters (bond lengths, bond angles, and dihedral angles). The following values of $H_{\rm f}$ (kcal/mol) were obtained for the E isomers (the corresponding values for the Z isomers are given in parentheses): IIIa, 27.2 (28.0); IIIc, -7.1 (-6.3); IIId, -49.3 (-47.8); IVa, -18.9 (-18.2); IVc), -55.9 (-55.5); IVd, -60.1 (-59.6). Thus the *E* isomers are more energetically favorable (by 0.4– 1.5 kcal/mol) than their Z isomers, which is consistent with the data reported previously for structurally related compounds [3, 4]. The calculated energy barrier to the E-Z transformation was 6–8 kcal/mol; this value is lower by 3–5 kcal/mol than the energy barrier to the *E*–*Z* transformation of Schiff bases derived from biphenyl-4-amine [2]. Computer simulation of the thermal *E*–*Z* isomerization of Schiff bases IIIa, IIIc, IIId, IVa, IVc, and IVd showed that stretching and bending vibrations of the phenoxyphenyl group provide the main contribution to the reduction of the energy barrier [11].

EXPERIMENTAL

The IR spectra were measured on a Nicolet Protégé-460 spetrophotometer with Fourier transform from samples prepared as KBr pellets. The ¹H NMR spectra were recorded on a Tesla BS-587A instrument at 100 MHz from 5% solutions in CDCl₃ using tetramethylsilane as internal reference. The elemental compositions were determined with an accuracy of $\pm 0.1\%$ on an Elementar Vario EL-III CHNOS analyzer. The molecular weights were determined by cryoscopy in benzene.

Initial vanillin and vanillal esters I were synthesized according to the procedures described in [12– 15]; 4-phenoxyaniline (II) was commercial product of analytical grade (purity 99%), mp $83-84^{\circ}$ C. *N*-[(*E*)-3-Alkoxy-4-hydroxy(alkoxy, alkanoyloxy, aroyloxy)benzylidene]-4-phenoxyanilines IIIa–IIIt and IVa–IVk (general procedure). A solution of 5 mmol of aldehyde I and 5 mmol of 4-phenoxyaniline (II) in 30 ml of anhydrous methanol was heated for 15 min under reflux. The hot solution was filtered through a folded filter paper, and the filtrate was cooled and kept for 10–15 h at 5°C. The precipitate was filtered off through a glass filter or separated by decanting, washed with a small amount of methanol, and dried in air.

Bis{2-alkoxy-4-[(E)-4-phenoxyphenyliminomethyl]phenyl} succinates IIIu and IVI (*general procedure***).** A solution of 5 mmol of bis(4-formyl-2methoxyphenyl) succinate or bis(2-ethoxy-4-formylphenyl) succinate and 10 mmol of 4-phenoxyaniline (**II**) in 30 ml of anhydrous methanol was heated for 15 min under reflux. The hot solution was filtered through a folded filter paper, and the filtrate was cooled and kept for 10–15 h at 5°C. The precipitate was filtered off through a glass filter, washed with a small amount of methanol, and dried in air.

N-**[**(*E*)-4-Methoxybenzylidene]-4-phenoxyaniline (**IIIa**). Yield 88%, mp 105–106°C. IR spectrum, v, cm⁻¹: 3080, 3061, 3035, 3020, 3008 (C–H_{arom}); 2962, 2945, 2922, 2879, 2845, 2844 (C–H_{aliph}); 1622 (C=N); 1606, 1588, 1575, 1509, 1500, 1491, 1417 (C=C_{arom}); 1280, 1264, 1251, 1190, 1181, 1168, 1105, 1076, 1030 (C–O); 872, 852, 826, 816, 785, 765, 745, 693 (δ C–H_{arom}). ¹H NMR spectrum, δ , ppm: 3.88 s (3H, Me), 6.90–7.95 m (13H, H_{arom}), 8.42 s (1H, CH=N). Found, %: C 79.48; H 5.72; N 4.28. *M* 291.5. C₂₀H₁₇NO₂. Calculated, %: C 79.19; H 5.65; N 4.62. *M* 303.4.

2-Methoxy-4-[*(E)*-**4-phenoxyphenyliminomethyl]**phenol (IIIb). Yield 90%, mp 77–78°C. IR spectrum, v, cm⁻¹: 3500 (OH); 3080, 3063, 3035, 3020, 3003 (C–H_{arom}); 2980, 2065, 2939, 2920, 2913, 2860, 2840 (C–H_{aliph}); 1624 (C=N); 1593, 1518, 1511, 1500, 1488, 1467, 1453, 1428 (C=C_{arom}); 1289, 1236, 1209, 1180, 1152, 1121, 1099, 1071, 1027, 1012 (C–O); 867, 852, 841, 823, 787, 753, 727, 711, 693, 613 (δ C–H_{arom}). ¹H NMR spectrum, δ , ppm: 3.95 s (3H, Me), 6.05 br.s (1H, OH), 6.80–7.75 m (12H, H_{arom}), 8.38 s (1H, CH=N). Found, %: C 75.53; H 5.48; N 3.97. *M* 311.2. C₂₀H₁₇NO₃. Calculated, %: C 75.22; H 5.37; N 4.39. *M* 319.4.

N-[(*E*)-3,4-Dimethoxybenzylidene]-4-phenoxyaniline (IIIc). Yield 90%, mp 107–108°C. IR spectrum, v, cm⁻¹: 3095, 3080, 3062, 3040, 3022, 3014 (C–H_{arom}); 2975, 2936, 2920, 2910, 2890, 2870, 2846, 2835 (C–H_{aliph}); 1624 (C=N); 1596, 1588, 1582, 1516, 1498, 1488, 1463, 1448, 1417 (C=C_{arom}); 1274, 1238, 1210, 1140, 1099, 1070, 1019 (C–O); 865, 850, 825, 810, 806, 796, 778, 755, 735, 694, 616 (δ C–H_{arom}). ¹H NMR spectrum, δ , ppm: 3.96 s (3H, 3-OMe), 4.00 s (3H, 4-OMe), 6.80–7.75 m (12H, H_{arom}), 8.40 s (1H, CH=N). Found, %: C 75.87; H 5.79; N 3.95. *M* 326.0. C₂₁H₁₉NO₃. Calculated, %: C 75.66; H 5.74; N 4.20. *M* 333.4.

2-Methoxy-4-[(*E***)-4-phenoxyphenyliminomethyl]phenyl acetate (IIId).** Yield 85%, glassy substance. IR spectrum, v, cm⁻¹: 3080, 3065, 3038, 3010 (C–H_{arom}); 2968, 2939, 2922, 2873, 2844, 2833 (C–H_{aliph}); 1766 (C=O); 1626 (C=N); 1589, 1506, 1499, 1488, 1465, 1418, 1369 (C=C_{arom}); 1277, 1239, 1213, 1195, 1151, 1120, 1033, 1010 (C–O); 904, 858, 837, 790, 756, 693, 660, 620 (δ C–H_{arom}). ¹H NMR spectrum, δ , ppm: 2.34 s (3H, Me), 3.95 s (3H, MeO), 6.80–7.70 m (12H, H_{arom}), 8.42 s (1H, CH=N). Found, %: C 73.42; H 5.43; N 3.54. *M* 347.9. C₂₂H₁₉NO₄. Calculated, %: C 73.12; H 5.30; N 3.88. *M* 361.4.

2-Methoxy-4-[(*E***)-4-phenoxyphenyliminomethyl]phenyl propanoate (IIIe).** Yield 88%, glassy substance. IR spectrum, v, cm⁻¹: 3080, 3066, 3038, 3009 (C–H_{arom}); 2981, 2941, 2919, 2879, 2848, 2830 (C–H_{aliph}); 1764 (C=O); 1627 (C=N); 1589, 1504, 1499, 1488, 1464, 1418, 1369 (C=C_{arom}); 1276, 1239, 1213, 1195, 1135, 1074, 1033 (C–O); 880, 858, 837, 790, 760, 740, 693, 620 (δ C–H_{arom}). ¹H NMR spectrum, δ , ppm: 1.28 t (3H, Me), 2.54 q (2H, CH₂), 3.94 s (3H, MeO), 6.80–7.70 m (12H, H_{arom}), 8.42 s (1H, CH=N). Found, %: C 73.82; H 5.77; N 3.32. *M* 361.5. C₂₃H₂₁NO₄. Calculated, %: C 73.58; H 5.64; N 3.73. *M* 375.4.

2-Methoxy-4-[(*E***)-4-phenoxyphenyliminomethyl]phenyl butanoate (IIIf).** Yield 87%, glassy substance. IR spectrum, v, cm⁻¹: 3080, 3066, 3038, 3008 (C–H_{arom}); 2966, 2936, 2875, 2850, 2828 (C–H_{aliph}); 1763 (C=O); 1627 (C=N); 1589, 1506, 1488, 1465, 1417, 1370 (C=C_{arom}); 1277, 1240, 1214, 1197, 1147, 1122, 1100, 1070, 1033 (C–O); 857, 837, 790, 755, 693, 620 (δ C–H_{arom}). ¹H NMR spectrum, δ , ppm: 1.05 t (3H, Me), 1.64 m (2H, MeCH₂), 2.54 t [2H, CH₂C(O)], 3.94 s (3H, MeO), 6.80–7.70 m (12H, H_{arom}), 8.42 s (1H, CH=N). Found, %: C 74.29; H 6.05; N 3.23. *M* 376.1. C₂₄H₂₃NO₄. Calculated, %: C 74.02; H 5.95; N 3.60. *M* 389.5.

2-Methoxy-4-[(*E*)-4-phenoxyphenyliminomethyl]phenyl 2-methylpropanoate (IIIg). Yield 89%, glassy substance. IR spectrum, v, cm⁻¹: 3080, 3064, 3039, 3008 (C–H_{arom}); 2975, 2937, 2875, 2849, 2827 (C–H_{aliph}); 1761 (C=O); 1628 (C=N); 1589, 1505, 1488, 1468, 1417, 1370 (C=C_{arom}); 1276, 1239, 1214, 1199, 1150, 1123, 1094, 1035 (C–O); 865, 838, 790, 755, 693, 620 (δ C–H_{arom}). ¹H NMR spectrum, δ , ppm: 1.37 d (6H, **Me**₂CH), 2.88 m (1H, CH), 3.94 s (3H, MeO), 6.80–7.70 m (12H, H_{arom}), 8.43 s (1H, CH=N). Found, %: C 74.38; H 6.11; N 3.28. *M* 379.3. C₂₄H₂₃NO₄. Calculated, %: C 74.02; H 5.95; N 3.60. *M* 389.5.

2-Methoxy-4-[*(E)*-4-phenoxyphenyliminomethyl]phenyl octanoate (IIIh). Yield 90%, glassy substance. IR spectrum, v, cm⁻¹: 3080, 3065, 3039, 3008 (C–H_{arom}); 2954, 2928, 2870, 2856 (C–H_{aliph}); 1764 (C=O); 1628 (C=N); 1589, 1505, 1488, 1465, 1417, 1371 (C=C_{arom}); 1276, 1240, 1214, 1197, 1139, 1121, 1102, 1034 (C–O); 875, 857, 840, 790, 755, 740, 725, 692 (δ C–H_{arom}). ¹H NMR spectrum, δ , ppm: 0.94 t (3H, Me), 1.34 m (8H, CH₂), 1.80 m (2H, MeCH₂), 2.58 t [2H, CH₂C(O)], 3.94 s (3H, MeO), 6.80–7.70 m (12H, H_{arom}), 8.43 s (1H, CH=N). Found, %: C 75.85; H 7.10; N 2.84. *M* 437.0. C₂₈H₃₁NO₄. Calculated, %: C 75.48; H 7.01; N 3.14. *M* 445.6.

2-Methoxy-4-[*(E)*-4-phenoxyphenyliminomethyl]phenyl decanoate (IIIi). Yield 90%, glassy substance. IR spectrum, v, cm⁻¹: 3080, 3065, 3039, 3005 (C–H_{arom}); 2953, 2926, 2870, 2854 (C–H_{aliph}); 1764 (C=O); 1628 (C=N); 1589, 1505, 1488, 1465, 1417, 1370 (C=C_{arom}); 1276, 1240, 1214, 1198, 1138, 1121, 1111, 1034 (C–O); 875, 857, 838, 790, 756, 740, 725, 693 (δ C–H_{arom}). ¹H NMR spectrum, δ , ppm: 0.91 t (3H, Me), 1.20–1.54 m (12H, CH₂), 1.84 m (2H, MeCH₂), 2.64 t [2H, CH₂C(O)], 3.94 s (3H, MeO), 6.80–7.70 m (12H, H_{arom}), 8.43 s (1H, CH=N). Found, %: C 76.34; H 7.66; N 2.61. *M* 461.4. C₃₀H₃₅NO₄. Calculated, %: C 76.08; H 7.45; N 2.96. *M* 473.6.

2-Methoxy-4-[*(E)*-**4-phenoxyphenyliminomethyl]phenyl octadecanoate (IIIj).** Yield 90%, mp 42– 43°C. IR spectrum, v, cm⁻¹: 3080, 3066, 3039, 3004 (C–H_{arom}); 2956, 2915, 2873, 2849 (C–H_{aliph}); 1759 (C=O); 1627 (C=N); 1589, 1509, 1499, 1489, 1471, 1417, 1370 (C=C_{arom}); 1277, 1242, 1214, 1198, 1138, 1121, 1106, 1031 (C–O); 875, 854, 837, 790, 757, 740, 722, 692 (δ C–H_{arom}). ¹H NMR spectrum, δ , ppm: 0.90 t (3H, Me), 1.10–2.12 m (30H, CH₂), 2.68 t [2H, CH₂C(O)], 3.94 s (3H, MeO), 6.80–7.70 m (12H, H_{arom}), 8.43 s (1H, CH=N). Found, %: C 78.23; H 8.86; N 2.02. *M* 569.5. C₃₈H₅₁NO₄. Calculated, %: C 77.91; H 8.77; N 2.39. *M* 585.8. **2-Methoxy-4-**[*(E)*-**4-phenoxyphenyliminomethyl]phenyl 2-methylprop-2-enoate (IIIk).** Yield 84%, mp 126–127°C. IR spectrum, v, cm⁻¹: 3100, 3085, 3055, 3045, 3017 (=CH₂, C–H_{arom}); 2982, 2970, 2930, 2885, 2850, 2835 (C–H_{aliph}); 1730 (C=O); 1683 (C=C); 1627 (C=N); 1598, 1584, 1503, 1492, 1477, 1461, 1419, 1376 (C=C_{arom}); 1274, 1231, 1212, 1199, 1151, 1124, 1099, 1031 (C–O); 873, 860, 838, 820, 803, 775, 762, 743, 715, 698, 645, 618, 603 (δ C–H_{arom}). ¹H NMR spectrum, δ , ppm: 2.10 s (3H, Me), 3.94 s (3H, MeO), 5.80 s and 6.41 s (1H each, =CH₂), 6.80–7.75 m (12H, H_{arom}), 8.45 s (1H, CH=N). Found, %: C 73.97; H 5.83; N 3.25. *M* 360.4. C₂₃H₂₁NO₄. Calculated, %: C 73.58; H 5.64; N 3.73. *M* 375.4.

2-Methoxy-4-[*(E)*-4-phenoxyphenyliminomethyl]phenyl phenylacetate (IIII). Yield 85%, glassy substance. IR spectrum, v, cm⁻¹: 3092, 3063, 3033, 3010 (C–H_{arom}); 2966, 2936, 2921, 2874, 2848, 2830 (C–H_{aliph}); 1763 (C=O); 1626 (C=N); 1589, 1510, 1499, 1488, 1464, 1455, 1417, 1371 (C=C_{arom}); 1277, 1239, 1214, 1199, 1152, 1119, 1074, 1032 (C–O); 860, 840, 791, 755, 729, 694, 660, 650, 620 (δ C–H_{arom}). ¹H NMR spectrum, δ , ppm: 3.82 s (2H, CH₂), 3.94 s (3H, MeO), 6.80–7.75 m (17H, H_{arom}), 8.45 s (1H, CH=N). Found, %: C 77.19; H 5.48; N 2.92. *M* 422.8. C₂₈H₂₃NO₄. Calculated, %: C 76.87; H 5.30; N 3.20. *M* 437.5.

2-Methoxy-4-[(*E***)-4-phenoxyphenyliminomethyl]phenyl 3-phenylbutanoate (IIIm).** Yield 87%, glassy material. IR spectrum, v, cm⁻¹: 3086, 3075, 3028, 3004 (C–H_{arom}); 2965, 2934, 2878, 2855, 2830 (C–H_{aliph}); 1761 (C=O); 1627 (C=N); 1589, 1505, 1500, 1488, 1464, 1454, 1417, 1369 (C=C_{arom}); 1277, 1239, 1214, 1198, 1149, 1131, 1981, 1033 (C–O); 880, 857, 838, 790, 758, 745, 700, 622 (δ C–H_{arom}). ¹H NMR spectrum, δ , ppm: 1.45 d (3H, Me), 2.92 d (2H, CH₂), 3.40 q (1H, CH), 3.94 s (3H, MeO), 6.80–7.74 m (17H, H_{arom}), 8.45 s (1H, CH=N). Found, %: C 77.82; H 5.96; N 2.75. *M* 451.6. C₃₀H₂₇NO₄. Calculated, %: C 77.40; H 5.85; N 3.01. *M* 465.5.

2-Methoxy-4-[(*E***)-4-phenoxyphenyliminomethyl]phenyl benzoate (IIIn).** Yield 84%, mp 112–113°C. IR spectrum, v, cm⁻¹: 3070, 3030, 3010 (C–H_{arom}); 2970, 2945, 2925, 2884, 2850, 2830 (C–H_{aliph}); 1743 (C=O); 1629 (C=N); 1593, 1506, 1487, 1465, 1450, 1416, 1370 (C=C_{arom}); 1278, 1255, 1233, 1212, 1195, 1151, 1121, 1080, 1061, 1035, 1024 (C–O); 871, 844, 810, 790, 760, 740, 710, 692, 680, 619 (δ C–H_{arom}). ¹H NMR spectrum, δ , ppm: 3.94 s (3H, MeO), 6.70– 8.20 m (17H, H_{arom}), 8.49 s (1H, CH=N). Found, %: C 76.91; H 5.15; N 3.03. *M* 409.7. C₂₇H₂₁NO₄. Calculated, %: C 76.58; H 5.00; N 3.31. *M* 423.5.

2-Methoxy-4-[(*E***)-4-phenoxyphenyliminomethyl]phenyl 2,4-dichlorobenzoate (IIIo).** Yield 88%, mp 92–93°C. IR spectrum, v, cm⁻¹: 3095, 3075, 3060, 3045, 3020 (C–H_{arom}); 2974, 2940, 2925, 2876, 2850, 2830 (C–H_{aliph}); 1721 (C=O); 1629 (C=N); 1589, 1506, 1488, 1460, 1455, 1417, 1377 (C=C_{arom}); 1279, 1240, 1214, 1195, 1151, 1140, 1123, 1104, 1075, 1032 (C–O); 880, 862, 855, 832, 796, 780, 761, 755, 740, 720, 695, 675, 622 (δ C–H_{arom}). ¹H NMR spectrum, δ , ppm: 3.95 s (3H, MeO), 6.70–8.50 m (15H, H_{arom}), 8.50 s (1H, CH=N). Found, %: C 65.98; H 4.47; Cl 13.88; N 2.50. *M* 480.3. C₂₇H₁₉Cl₂NO₄. Calculated, %: C 65.60; H 4.28; Cl 14.34; N 2.83. *M* 494.4.

2-Methoxy-4-[(*E***)-4-phenoxyphenyliminomethyl]phenyl 4-bromobenzoate (IIIp).** Yield 87%, mp 118– 119°C. IR spectrum, v, cm⁻¹: 3095, 3082, 3060, 3040, 3030, 3011 (C–H_{arom}); 2970, 2940, 2922, 2870, 2860, 2845, 2835 (C–H_{aliph}); 1739 (C=O); 1629 (C=N); 1588, 1510, 1496, 1481, 1460, 1420, 1395 (C=C_{arom}); 1294, 1262, 1239, 1214, 1202, 1161, 1113, 1072, 1031, 1010 (C–O); 866, 845, 820, 810, 751, 695, 676, 620 (δ C–H_{arom}). ¹H NMR spectrum, δ , ppm: 3.95 s (3H, MeO), 6.70–8.20 m (16H, H_{arom}), 8.51 s (1H, CH=N). Found, %: C 64.93; H 4.19; Br 15.45; N 2.34. *M* 492.6. C₂₇H₂₀BrNO₄. Calculated, %: C 64.55; H 4.01; Br 15.91; N 2.79. *M* 502.4.

2-Methoxy-4-[*(E)*-**4**-**phenoxyphenyliminomethyl**]**phenyl 3-nitrobenzoate (IIIq).** Yield 86%, mp 119– 120°C. IR spectrum, v, cm⁻¹: 3110, 3100, 3090, 3070, 3050, 3040, 3010 (C– H_{arom}); 2978, 2940, 2925, 2880, 2845, 2830 (C– H_{aliph}); 1742 (C=O); 1630 (C=N); 1620, 1590, 1586, 1506, 1500, 1488, 1466, 1440, 1418, 1370 (C=C_{arom}); 1539, 1352 (NO₂); 1283, 1252, 1232, 1211, 1197, 1150, 1121, 1110, 1100, 1080, 1035 (C–O); 865, 857, 840, 825, 815, 775, 755, 714, 705, 690, 655, 620 (δ C– H_{arom}). ¹H NMR spectrum, δ , ppm: 3.94 (3H, MeO), 6.70–9.15 m (16H, H_{arom}), 8.49 s (1H, CH=N). Found, %: C 69.68; H 4.47; N 5.60. *M* 455.3. C₂₇H₂₀N₂O₆. Calculated, %: C 69.23; H 4.30; N 5.98. *M* 468.5.

2-Methoxy-4-[(*E***)-4-phenoxyphenyliminomethyl]phenyl methyl carbonate (IIIr).** Yield 84%, mp 83– 84°C. IR spectrum, v, cm⁻¹: 3090, 3080, 3070, 3060, 3016, 3002 (C–H_{arom}); 2978, 2953, 2940, 2920, 2880, 2840, 2830 (C–H_{aliph}); 1764 (C=O); 1628 (C=N); 1597, 1587, 1508, 1490, 1485, 1465, 1440, 1417, 1373 (C=C_{arom}); 1275, 1265, 1256, 1235, 1213, 1194, 1151, 1119, 1103, 1056, 1034 (C–O); 871, 858, 830, 800, 776, 758, 730, 720, 694, 650, 620 (δ C–H_{arom}). ¹H NMR spectrum, δ , ppm: 3.94 (3H, 3-MeO), 3.97 s [3H, 4-MeOC(O)], 6.85–7.75 m (12H, H_{arom}), 8.44 s (1H, CH=N). Found, %: C 70.35; H 5.21; N 3.28. *M* 367.7. C₂₂H₁₉NO₅. Calculated, %: C 70.02; H 5.07; N 3.71. *M* 377.4.

Ethyl 2-methoxy-4-[*(E)*-4-phenoxyphenyliminomethyl]phenyl carbonate (IIIs). Yield 85%, mp 73– 74°C. IR spectrum, ν, cm⁻¹: 3070, 3060, 3040, 3008 (C–H_{arom}); 2985, 2960, 2928, 2900, 2880, 2850, 2830 (C–H_{aliph}); 1756 (C=O); 1626 (C=N); 1589, 1510, 1499, 1489, 1441, 1430, 1385 (C=C_{arom}); 1279, 1244, 1215, 1200, 1162, 1123, 1063, 1045 (C–O); 880, 860, 840, 822, 790, 786, 747, 691, 621 (δC–H_{arom}). ¹H NMR spectrum, δ, ppm: 1.45 t (3H, Me), 3.93 s (3H, MeO), 4.18 q (2H, CH₂), 6.85–7.72 m (12H, H_{arom}), 8.43 s (1H, CH=N). Found, %: C 70.89; H 5.62; N 3.19. *M* 376.2. C₂₃H₂₁NO₅. Calculated, %: C 70.58; H 5.41; N 3.58. *M* 391.4.

2-Methoxy-4-[(*E***)-4-phenoxyphenyliminomethyl]phenyl 1,3-dicarbadodecaborane-1-carboxylate (IIIt).** Yield 84%, mp 120–121°C. IR spectrum, v, cm⁻¹: 3080, 3062, 3045, 3015 (C–H_{arom}, C–H_{carb}); 2967, 2929, 2880, 2845 (C–H_{aliph}); 2606 (B–H); 1745 (C=O); 1630 (C=N); 1589, 1505, 1488, 1464, 1417, 1384 (C=C_{arom}); 1325, 1279, 1242, 1218, 1193, 1167, 1147, 1125, 1029 (C–O); 876, 855, 840, 820, 790, 750, 740, 690, 630, 610 (δ C–H_{arom}, δ C–H_{carb}). ¹H NMR spectrum, δ , ppm: 3.12 br.s (1H, CH, carborane), 3.94 s (3H, MeO), 6.70–7.80 (12H, H_{arom}), 8.42 s (1H, CH=N). Found, %: C 56.83; H 5.74; B 21.68; N 2.42. *M* 473.6. C₂₃H₂₇B₁₀NO₄. Calculated, %: C 56.43; H 5.56; B 22.08; N 2.86. *M* 489.6.

Bis{2-methoxy-4-[*(E)*-4-phenoxyphenyliminomethyl]phenyl} succinate (IIIu). Yield 87%, mp 161– 162°C. IR spectrum, v, cm⁻¹: 3090, 3080, 3060, 3040, 3015 (C–H_{arom}); 2970, 2944, 2934, 2900, 2870, 2845, 2830 (C–H_{aliph}); 1748 (C=O); 1626 (C=N); 1598, 1588, 1504, 1489, 1468, 1417, 1372 (C=C_{arom}); 1273, 1243, 1211, 1194, 1166, 1150, 1117, 1034 (C–O); 873, 863, 838, 818, 790, 780, 751, 740, 685, 675, 620 (C–H_{arom}). ¹H NMR spectrum, δ, ppm: 3.07 s (4H, CH₂), 3.94 s (6H, MeO), 6.80–7.70 m (24H, H_{arom}), 8.43 s (2H, CH=N). Found, %: C 73.58; H 5.24; N 3.50. *M* 706.5. C₄₄H₃₆N₂O₈. Calculated, %: C 73.32; H 5.03; N 3.89. *M* 720.8.

2-Ethoxy-4-[(*E***)-4-phenoxyphenyliminomethyl]phenol (IVa).** Yield 89%, mp 63–64°C. IR spectrum, v, cm⁻¹: 3350 (O–H); 3080, 3065, 3035, 3004 (C–H_{arom}); 2980, 2065, 2934, 2910, 2878, 2847 (C–H_{aliph}); 1621 (C=N); 1593, 1519, 1512, 1505, 1488, 1440, 1399, 1385 (C=C_{arom}); 1287, 1249, 1201, 1163, 1123, 1111, 1071, 1043 (C–O); 866, 858, 837, 830, 815, 787, 780, 746, 711, 691, 614 (δ C–H_{arom}). ¹H NMR spectrum, δ , ppm: 1.48 t (3H, Me), 4.22 q (2H, CH₂O), 6.05 br.s (1H, OH), 6.85–7.70 m (12H, H_{arom}), 8.36 s (1H, CH=N). Found, %: C 75.94; H 5.85; N 3.94. *M* 320.6. C₂₁H₁₉NO₃. Calculated, %: C 75.66; H 5.74; N 4.20. *M* 333.4.

N-[(*E*)-3-Ethoxy-4-methoxybenzylidene]-4-phenoxyaniline (IVb). Yield 89%, mp 93–94°C. IR spectrum, v, cm⁻¹: 3090, 3070, 3060, 3040, 3017, 3001 (C–H_{arom}); 2985, 2970, 2924, 2871, 2840 (C–H_{aliph}); 1622 (C=N); 1592, 1587, 1577, 1512, 1501, 1487, 1433, 1385 (C=C_{arom}); 1269, 1234, 1207, 1190, 1164, 1138, 1111, 1026 (C–O); 868, 834, 820, 805, 788, 773, 740, 730, 691, 616 (δ C–H_{arom}). ¹H NMR spectrum, δ , ppm: 1.52 t (3H, Me), 3.95 s (3H, MeO), 4.26 q (2H, CH₂O), 6.70–7.65 m (12H, H_{arom}), 8.39 s (1H, CH=N). Found, %: C 76.45; H 6.23; N 3.74. *M* 334.7. C₂₂H₂₁NO₃. Calculated, %: C 76.06; H 6.09; N 4.03. *M* 347.4.

2-Ethoxy-4-[(*E***)-4-phenoxyphenyliminomethyl]phenyl acetate (IVc).** Yield 90%, glassy substance. IR spectrum, v, cm⁻¹: 3080, 3065, 3039, 3012 (C–H_{arom}); 2981, 2934, 2900, 2881, 2845 (C–H_{aliph}); 1766 (C=O); 1626 (C=N); 1589, 1509, 1499, 1488, 1440, 1394, 1369 (C=C_{arom}); 1278, 1240, 1210, 1163, 1120, 1041, 1010 (C–O); 873, 857, 836, 790, 753, 693, 670, 620 (δ C–H_{arom}). ¹H NMR spectrum, δ , ppm: 1.43 t (3H, CH₃CH₂), 2.34 s (3H, Me), 4.14 q (2H, CH₂O), 6.70– 7.70 m (12H, H_{arom}), 8.43 s (1H, CH=N). Found, %: C 73.90; H 5.76; N 3.37. *M* 362.8. C₂₃H₂₁NO₄. Calculated, %: C 73.58; H 5.64; N 3.73. *M* 375.4.

2-Ethoxy-4-[*(E)*-**4-phenoxyphenyliminomethyl]phenyl propanoate (IVd).** Yield 87%, glassy substance. IR spectrum, v, cm⁻¹: 3080, 3065, 3039, 3009 (C–H_{arom}); 2981, 2940, 2900, 2881, 2830 (C–H_{aliph}); 1764 (C=O); 1627 (C=N); 1588, 1500, 1488, 1431, 1394 (C=C_{arom}); 1275, 1240, 1213, 1161, 1136, 1121, 1074, 1042 (C–O); 885, 874, 857, 838, 790, 755, 693, 620 (δ C–H_{arom}). ¹H NMR spectrum, δ , ppm: 1.38 t [3H, CH₃CH₂C(O)], 1.43 t (3H, CH₃CH₂O), 2.68 q [2H, CH₂C(O)], 4.14 q (2H, CH₂O), 6.70–7.70 m (12H, H_{arom}), 8.43 s (1H, CH=N). Found, %: C 74.43; H 6.11; N 3.35. *M* 370.9. C₂₄H₂₃NO₄. Calculated, %: C 74.02; H 5.95; N 3.60. *M* 389.5.

2-Ethoxy-4-[(*E*)-4-phenoxyphenyliminomethyl]phenyl butanoate (IVe). Yield 84%, glassy substance. IR spectrum, v, cm^{-1} : 3080, 3065, 3039, 3008 (C–H_{arom}); 2975, 2934, 2900, 2875, 2830 (C–H_{aliph}); 1763 (C=O); 1627 (C=N); 1589, 1505, 1500, 1487, 1431, 1390, 1368 (C=C_{arom}); 1276, 1240, 1213, 1161, 1143, 1120, 1075, 1042 (C–O); 878, 856, 837, 790, 755, 693, 620 (δ C–H_{arom}). ¹H NMR spectrum, δ , ppm: 1.03 t [3H, **Me**(CH₂)₂], 1.44 t (3H, **Me**CH₂O), 1.64 m (2H, MeCH₂CH₂), 2.54 t [2H, CH₂C(O)], 4.14 q (2H, CH₂O), 6.70–7.70 m (12H, H_{arom}), 8.43 s (1H, CH=N). Found, %: C 74.72; H 6.25; N 3.12. *M* 391.0. C₂₅H₂₅NO₄. Calculated, %: C 74.42; H 6.25; N 3.47. *M* 403.5.

2-Ethoxy-4-[(*E***)-4-phenoxyphenyliminomethyl]phenyl 2-methylpropanoate (IVf).** Yield 86%, mp 87–88°C. IR spectrum, v, cm⁻¹: 3090, 3070, 3061, 3052, 3017 (C–H_{arom}); 2982, 2970, 2934, 2895, 2884, 2873, 2840, 2827 (C–H_{aliph}); 1755 (C=O); 1629 (C=N); 1600, 1589, 1581, 1510, 1500, 1493, 1480, 1465, 1432, 1415, 1390, 1380, 1368 (C=C_{arom}); 1285, 1270, 1239, 1213, 1167, 1118, 1099, 1040 (C–O); 880, 863, 837, 794, 778, 745, 735, 702, 655, 645, 619 (δ C–H_{arom}). ¹H NMR spectrum, δ , ppm: 1.37 d (6H, Me₂C), 1.42 t (3H, Me), 2.88 m (1H, CH), 4.18 q (2H, CH₂O), 6.80– 7.72 m (12H, H_{arom}), 8.43 s (1H, CH=N). Found, %: C 74.83; H 6.34; N 3.06. *M* 393.4. C₂₅H₂₅NO₄. Calculated, %: C 74.42; H 6.25; N 3.47. *M* 403.5.

2-Ethoxy-4-[(*E***)-4-phenoxyphenyliminomethyl]phenyl 3-methylbutanoate (IVg).** Yield 84%, mp 47– 48°C. IR spectrum, v, cm⁻¹: 3090, 3065, 3039, 3010 (C–H_{arom}); 2980, 2962, 2934, 2900, 2873, 2815 (C–H_{aliph}); 1762 (C=O); 1627 (C=N); 1589, 1505, 1500, 1488, 1431, 1393, 1369 (C=C_{arom}); 1290, 1275, 1240, 1213, 1197, 1160, 1153, 1120, 1099, 1042 (C–O); 876, 857, 838, 790, 755, 695, 621 (δ C–H_{arom}). ¹H NMR spectrum, δ , ppm: 1.13 d (6H, Me₂C), 1.42 t (3H, Me), 1.43–2.90 m (3H, CH, CH₂), 4.14 q (2H, CH₂O), 6.70– 7.70 m (12H, H_{arom}), 8.43 s (1H, CH=N). Found, %: C 75.08; H 6.74; N 3.04. *M* 409.5. C₂₆H₂₇NO₄. Calculated, %: C 74.80; H 6.52; N 3.35. *M* 417.5.

2-Ethoxy-4-[(*E***)-4-phenoxyphenyliminomethyl]phenyl 4-methylbenzoate (IVh).** Yield 85%, mp 80– 81°C. IR spectrum, v, cm⁻¹: 3090, 3070, 3040, 3009 (C–H_{arom}); 2980, 2970, 2924, 2900, 2878, 2848, 2820 (C–H_{aliph}); 1733 (C=O); 1626 (C=N); 1611, 1587, 1498, 1488, 1430, 1390, 1370 (C=C_{arom}); 1269, 1260, 1243, 1212, 1196, 1172, 1161, 1118, 1070, 1042, 1018 (C–O); 873, 855, 837, 790, 780, 750, 744, 691, 625 (δ C–H_{arom}). ¹H NMR spectrum, δ , ppm: 1.34 t (3H, CH₃CH₂), 2.48 s (3H, CH₃C₆H₄), 4.18 q (2H, CH₂O), 6.70–8.25 m (16H, H_{arom}), 8.49 s (1H, CH=N). Found, %: C 77.46; H 5.70; N 2.74. *M* 438.8. C₂₉H₂₅NO₄. Calculated, %: C 77.14; H 5.58; N 3.10. *M* 451.5. **2-Ethoxy-4-[(***E***)-4-phenoxyphenyliminomethyl]phenyl methyl carbonate (IVi).** Yield 84%, mp 72– 73°C. IR spectrum, v, cm⁻¹: 3090, 3080, 3064, 3035, 3004 (C–H_{arom}); 2990, 2977, 2965, 2939, 2920, 2880, 2844, 2830 (C–H_{aliph}); 1758 (C=O); 1627 (C=N); 1597, 1587, 1508, 1490, 1484, 1465, 1416, 1385, 1371 (C=C_{arom}); 1277, 1252, 1236, 1214, 1200, 1197, 1151, 1120, 1097, 1056, 1034 (C–O); 869, 855, 835, 817, 794, 777, 760, 750, 740, 715, 695, 645, 635, 619 (δ C–H_{arom}). ¹H NMR spectrum, δ , ppm: 1.42 t (3H, CH₃CH₂), 3.97 s (3H, MeO), 4.14 q (2H, CH₂O), 6.80–7.75 m (12H, H_{arom}), 8.44 s (1H, CH=N). Found, %: C 70.86; H 5.53; N 3.32. *M* 380.2. C₂₃H₂₁NO₅. Calculated, %: C 70.58; H 5.41; N 3.58. *M* 391.4.

2-Ethoxy-4-[(*E***)-4-phenoxyphenyliminomethyl]phenyl ethyl carbonate (IVj).** Yield 83%, glassy substance. IR spectrum, v, cm⁻¹: 3090, 3078, 3040, 3015 (C–H_{arom}); 2982, 2937, 2901, 2876, 2822 (C–H_{aliph}); 1765 (C=O); 1628 (C=N); 1589, 1507, 1499, 1488, 1432, 1394, 1369 (C=C_{arom}); 1279, 1244, 1215, 1200, 1163, 1122, 1097, 1055, 1043 (C–O); 874, 857, 837, 815, 790, 776, 755, 693, 619 (δ C–H_{arom}). ¹H NMR spectrum, δ , ppm: 1.20–1.70 m (6H, Me), 4.00–4.50 m (4H, CH₂O), 6.80–7.75 m (12H, H_{arom}), 8.43 s (1H, CH=N). Found, %: C 71.45; H 5.89; N 3.30. *M* 382.8. C₂₄H₂₃NO₅. Calculated, %: C 71.10; H 5.72; N 3.45. *M* 405.4.

2-Ethoxy-4-[(*E***)-4-phenoxyphenyliminomethyl]phenyl 1,3-dicarbadodecaborane-1-carboxylate (IVk).** Yield 88%, mp 132–133°C. IR spectrum, v, cm⁻¹: 3090, 3061, 3045, 3005 (C–H_{arom}, C–H_{carb}); 2979, 2961, 2931, 2897, 2884, 2860, 2830 (C–H_{aliph}); 2608 (B–H); 1758 (C=O); 1625 (C=N); 1589, 1508, 1488, 1456, 1424, 1388 (C=C_{arom}); 1290, 1237, 1212, 1190, 1160, 1115, 1105, 1036 (C–O); 869, 828, 796, 770, 728, 718, 691, 630, 619 (δ C–H_{arom}, δ C–H_{carb}). ¹H NMR spectrum, δ , ppm: 1.45 t (3H, Me), 3.12 br.s (1H, CH, carborane), 4.18 q (2H, CH₂O), 6.65–7.75 m (12H, H_{arom}), 8.42 s (1H, CH=N). Found, %: C 57.73; H 5.89; B 21.07; N 2.54. *M* 488.5. C₂₄H₂₉B₁₀NO₄. Calculated, %: C 57.24; H 5.80; B 21.47; N 2.78. *M* 503.6.

Bis{2-ethoxy-4-[(*E***)-4-phenoxyphenyliminomethyl]phenyl} succinate (IVI).** Yield 85%, mp 155– 156°C. IR spectrum, v, cm⁻¹: 3070, 3060, 3040, 3004 (C–H_{arom}); 2975, 2929, 2895, 2880, 2850, 2830 (C–H_{aliph}); 1758 (C=O); 1630 (C=N); 1600, 1589, 1510, 1499, 1487, 1426, 1395 (C=C_{arom}); 1287, 1266, 1235, 1214, 1198, 1161, 1124, 1116, 1040 (C–O); 860, 840, 815, 793, 780, 740, 693, 665, 620 (&C–H_{arom}). ¹H NMR spectrum, δ , ppm: 1.44 t (6H, C**H**₃CH₂), 3.07 s [4H, (CH₂)₂], 4.14 q (4H, CH₂O), 6.80–7.70 m (24H, H_{arom}), 8.43 s (2H, 2CH=N). Found, %: C 74.01; H 5.39; N 3.51. *M* 735.7. C₄₆H₄₀N₂O₈. Calculated, %: C 73.78; H 5.38; N 3.74. *M* 748.8.

This study was performed under financial support by the Byelorussian Republican Foundation for Basic Research (project no. Kh08-227).

REFERENCES

- Dikusar, E.A., Kozlov, N.G., Potkin, V.I., Azarko, V.A., and Yuvchenko, A.P., *Russ. J. Gen. Chem.*, 2007, vol. 77, p. 278.
- Dikusar, E.A., Kozlov, N.G., Potkin, V.I., Azarko, V.A., and Yuvchenko, A.P., *Russ. J. Gen. Chem.*, 2007, vol. 77, p. 1766.
- Dikusar, E.A., Kozlov, N.G., Potkin, V.I., Azarko, V.A., and Yuvchenko, A.P., *Russ. J. Gen. Chem.*, 2008, vol. 78, p. 281.
- 4. Dikusar, E.A., Kozlov, N.G., Tlegenov, R.T., and Uteniyazov, K.U., *Azometiny na osnove vanilina i vanilalya* (Schiff Bases Derived from Vanillin and Vanillal), Karakalpakstan: Nukus, 2007, p. 207.
- Azarko, V.A., Dikusar, E.A., Yuvchenko, A.P., Potkin, V.I., and Kozlov, N.G., Abstracts of Papers, *Mezhdunarodnaya nauchno-tekhnicheskaya konferentsiya "Polimernye kompozity i tribologiya" (Polikomtrib-2007)* (Int. Scientific and Technical Conf. "Polymeric Composite Materials and Tribology"), Gomel', 2007, p. 102.

- Azarko, V.A., Dikusar, E.A., Potkin, V.I., Kozlov, N.G., and Yuvchenko, A.P., *Optika neodnorodnykh struktur –* 2007: materialy mezhdunarodnoi nauchno-prakticheskoi konferentsii (Optics of Heterogeneous Structures 2007. Proc. Int. Scientific and Practical Conf.), Mogilev: Mogilev. Gos. Univ. imeni A.A. Kuleshova, 2007, p. 27.
- Dyer, J.R., Applications of Absorption Spectroscopy of Organic Compounds, Englewood Cliffs: Prentice–Hall, 1965. Translated under the title Prilozheniya absorbtsionnoi spektroskopii organicheskikh soedinenii, Moscow: Khimiya, 1970, p. 92.
- 8. Stewart, J.J.P., J. Comput. Chem., 1989, vol. 10, p. 209.
- 9. Stewart, J.J.P., J. Comput. Chem., 1989, vol. 10, p. 221.
- Shmidt, M.W., Baldridge, K.K., Boatz, J.A., Elbert, S.T., Gordon, M.S., Jensen, J.H., Koseki, S., Matsunaga, N., Nguyen, K.A., Su, S.J., Windus, T.L., Dupuis, M., and Montgomery, J.A., *J. Comput. Chem.*, 1993, vol. 14, p. 1347.
- Nakanishi, K., Infrared Absorption Spectroscopy. Practical, San Francisco: Holden-Day, 1962. Translated under the title Infrakrasnye spektry i stroenie organicheskikh soedinenii, Moscow: Mir, 1965, p. 22.
- Dikusar, E.A., Vyglazov, O.G., Moiseichuk, K.L., Zhukovskaya, N.A., and Kozlov, N.G., *Zh. Prikl. Khim.*, 2005, vol. 78, p. 122.
- 13. Dikusar, E.A. and Kozlov, N.G., *Khim. Prirodn. Soedin.*, 2005, p. 74.
- 14. Dikusar, E.A. and Kozlov, N.G., Russ. J. Org. Chem., 2005, vol. 41, p. 992.
- 15. Dikusar, E.A., Zh. Prikl. Khim., 2006, vol. 79, p. 1043.